Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 666: 48

Answer

$||2{\bf{e}} - 3{\bf{f}}|| = 4$.

Work Step by Step

We have $||{\bf{e}} + {\bf{f}}|{|^2} = \left( {{\bf{e}} + {\bf{f}}} \right)\cdot\left( {{\bf{e}} + {\bf{f}}} \right) = {\bf{e}}\cdot{\bf{e}} + {\bf{f}}\cdot{\bf{e}} + {\bf{e}}\cdot{\bf{f}} + {\bf{f}}\cdot{\bf{f}}$ $||{\bf{e}} + {\bf{f}}|{|^2} = ||{\bf{e}}|{|^2} + 2{\bf{e}}\cdot{\bf{f}} + ||{\bf{f}}|{|^2}$ Since ${\bf{e}}$ and ${\bf{f}}$ are unit vectors, $||{\bf{e}}|| = 1$ and $||{\bf{f}}|| = 1$ and we have $||{\bf{e}} + {\bf{f}}|| = \sqrt {\frac{3}{2}} $. So, $||{\bf{e}} + {\bf{f}}|{|^2} = 1 + 2{\bf{e}}\cdot{\bf{f}} + 1 = \frac{3}{2}$ ${\bf{e}}\cdot{\bf{f}} = - \frac{1}{4}$ Next, we evaluate $||2{\bf{e}} - 3{\bf{f}}|{|^2}$. $||2{\bf{e}} - 3{\bf{f}}|{|^2} = \left( {2{\bf{e}} - 3{\bf{f}}} \right)\cdot\left( {2{\bf{e}} - 3{\bf{f}}} \right)$ $||2{\bf{e}} - 3{\bf{f}}|{|^2} = 4{\bf{e}}\cdot{\bf{e}} - 6{\bf{f}}\cdot{\bf{e}} - 6{\bf{e}}\cdot{\bf{f}} + 9{\bf{f}}\cdot{\bf{f}}$ $||2{\bf{e}} - 3{\bf{f}}|{|^2} = 4||{\bf{e}}|{|^2} - 12{\bf{e}}\cdot{\bf{f}} + 9||{\bf{f}}|{|^2}$ Substituting $||{\bf{e}}|| = 1$, $||{\bf{f}}|| = 1$ and ${\bf{e}}\cdot{\bf{f}} = - \frac{1}{4}$ in the last equation gives $||2{\bf{e}} - 3{\bf{f}}|{|^2} = 4 - 12\left( { - \frac{1}{4}} \right) + 9 = 16$. Thus, $||2{\bf{e}} - 3{\bf{f}}|| = 4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.