Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 666: 34

Answer

(c) $ v\cdot \langle -3,0,0 \rangle $ is equal to zero for all choices of $ v $.

Work Step by Step

Since $ v $ lies in $ yz $-plane, then it will take the form $ \langle 0,a,b \rangle $. (a) $ v\cdot \langle 0,2,1 \rangle =\langle 0,a,b \rangle\cdot \langle 0,2,1 \rangle=2a+b\neq 0$ for some $ a,b $ . (b) $ v\cdot k =\langle 0,a,b \rangle\cdot \langle 0,0,1 \rangle=b\neq 0$ for some $ b $. (c) $ v\cdot \langle -3,0,0 \rangle=-3*0+0*a+0 *b=0$ for all choices of $ v $. (b) $ v\cdot j =\langle 0,a,b \rangle\cdot \langle 0,1,0 \rangle=a \neq 0$ for some $ a $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.