Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 666: 45

Answer

(a) Since $||{\bf{v}} + {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} + 2{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2}$, so, $||{\bf{v}} + {\bf{w}}|{|^2} = {3^2} + {5^2} + 2{\bf{v}}\cdot{\bf{w}}$ (b) $||{\bf{v}} + {\bf{w}}|| = 7$

Work Step by Step

(a) We have $||{\bf{v}} + {\bf{w}}|{|^2} = \left( {{\bf{v}} + {\bf{w}}} \right)\cdot\left( {{\bf{v}} + {\bf{w}}} \right)$. So, $||{\bf{v}} + {\bf{w}}|{|^2} = \left( {{\bf{v}} + {\bf{w}}} \right)\cdot\left( {{\bf{v}} + {\bf{w}}} \right) = {\bf{v}}\cdot{\bf{v}} + {\bf{v}}\cdot{\bf{w}} + {\bf{w}}\cdot{\bf{v}} + {\bf{w}}\cdot{\bf{w}}$ Since ${\bf{v}}\cdot{\bf{v}} = ||{\bf{v}}|{|^2}$, ${\bf{w}}\cdot{\bf{w}} = ||{\bf{w}}|{|^2}$, and ${\bf{v}}\cdot{\bf{w}} = {\bf{w}}\cdot{\bf{v}}$, we have $||{\bf{v}} + {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} + 2{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2}$. Since $||{\bf{v}}|| = 3$ and $||{\bf{w}}|| = 5$, so $||{\bf{v}} + {\bf{w}}|{|^2} = {3^2} + {5^2} + 2{\bf{v}}\cdot{\bf{w}}$. (b) Since the angle between ${\bf{v}}$ and ${\bf{w}}$ is $\theta = \frac{\pi }{3}$. By Eq. (1) of Theorem 2: ${\bf{v}}\cdot{\bf{w}} = ||{\bf{v}}||||{\bf{w}}||\cos \theta = 3\cdot5\cdot\cos \frac{\pi }{3}$ ${\bf{v}}\cdot{\bf{w}} = \frac{{15}}{2}$ From the result in part (a) we have $||{\bf{v}} + {\bf{w}}|{|^2} = {3^2} + {5^2} + 2{\bf{v}}\cdot{\bf{w}}$. So, $||{\bf{v}} + {\bf{w}}|{|^2} = {3^2} + {5^2} + 2{\bf{v}}\cdot{\bf{w}} = 9 + 25 + 15 = 49$ $||{\bf{v}} + {\bf{w}}|| = 7$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.