Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 666: 46

Answer

(a) ${\bf{v}}\cdot{\bf{w}} = - 3$ (b) $||2{\bf{v}} + {\bf{w}}|| = \sqrt {13} $ (c) $||2{\bf{v}} - 3{\bf{w}}|| = \sqrt {133} $

Work Step by Step

(a) By Eq. (1) of Theorem 2: ${\bf{v}}\cdot{\bf{w}} = ||{\bf{v}}||||{\bf{w}}||\cos \theta = 2\cdot3\cdot \cos120^\circ = - 3$ (b) $||2{\bf{v}} + {\bf{w}}|{|^2} = \left( {2{\bf{v}} + {\bf{w}}} \right)\cdot\left( {2{\bf{v}} + {\bf{w}}} \right)$ $||2{\bf{v}} + {\bf{w}}|{|^2} = 4{\bf{v}}\cdot{\bf{v}} + 2{\bf{w}}\cdot{\bf{v}} + 2{\bf{v}}\cdot{\bf{w}} + {\bf{w}}\cdot{\bf{w}}$ $||2{\bf{v}} + {\bf{w}}|{|^2} = 4||{\bf{v}}|{|^2} + 4{\bf{v}}\cdot{\bf{w}} + ||{\bf{w}}|{|^2}$ Substituting $||{\bf{v}}|| = 2$, $||{\bf{w}}|| = 3$, and the result from part (a): ${\bf{v}}\cdot{\bf{w}} = - 3$ in the last equation, we get $||2{\bf{v}} + {\bf{w}}|{|^2} = 4\cdot{2^2} + 4\left( { - 3} \right) + {3^2} = 13$ $||2{\bf{v}} + {\bf{w}}|| = \sqrt {13} $ (c) $||2{\bf{v}} - 3{\bf{w}}|{|^2} = \left( {2{\bf{v}} - 3{\bf{w}}} \right)\cdot\left( {2{\bf{v}} - 3{\bf{w}}} \right)$ $||2{\bf{v}} - 3{\bf{w}}|{|^2} = 4{\bf{v}}\cdot{\bf{v}} - 6{\bf{w}}\cdot{\bf{v}} - 6{\bf{v}}\cdot{\bf{w}} + 9{\bf{w}}\cdot{\bf{w}}$ $||2{\bf{v}} - 3{\bf{w}}|{|^2} = 4||{\bf{v}}|{|^2} - 12{\bf{v}}\cdot{\bf{w}} + 9||{\bf{w}}|{|^2}$ Substituting $||{\bf{v}}|| = 2$, $||{\bf{w}}|| = 3$, and the result from part (a): ${\bf{v}}\cdot{\bf{w}} = - 3$ in the last equation, we get $||2{\bf{v}} - 3{\bf{w}}|{|^2} = 4\cdot{2^2} - 12\left( { - 3} \right) + 9\cdot{3^2} = 133$ $||2{\bf{v}} - 3{\bf{w}}|| = \sqrt {133} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.