Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 82

Answer

$$A = \frac{{81\ln 3 - 20}}{4}$$

Work Step by Step

$$\eqalign{ & y = {x^3}\ln x,{\text{ }}y = 0,{\text{ }}x = 1,{\text{ }}x = 3 \cr & {\text{From the graph we can define the area as}} \cr & A = \int_1^3 {{x^3}\ln x} dx \cr & {\text{Integrating by the formula of exercise 69}} \cr & \int {{x^n}\ln x} dx = \frac{{{x^{n + 1}}}}{{{{\left( {n + 1} \right)}^2}}}\left[ { - 1 + \left( {n + 1} \right)\ln x} \right] + C \cr & A = \int_1^3 {{x^3}\ln x} dx \cr & n = 3 \cr & A = \left( {\frac{{{x^{3 + 1}}}}{{{{\left( {3 + 1} \right)}^2}}}\left[ { - 1 + \left( {3 + 1} \right)\ln x} \right]} \right)_1^3 \cr & A = \left( {\frac{{{x^4}}}{{16}}\left[ {4\ln x - 1} \right]} \right)_1^3 \cr & {\text{Evaluating}} \cr & A = \left( {\frac{{{3^4}}}{{16}}\left[ {4\ln 3 - 1} \right]} \right) - \left( {\frac{{{1^4}}}{{16}}\left[ {4\ln 1 - 1} \right]} \right) \cr & A = \left( {\frac{{81}}{{16}}\left[ {4\ln 3 - 1} \right]} \right) - \left( {\frac{{{1^4}}}{{16}}\left[ { - 1} \right]} \right) \cr & A = \frac{{81}}{{16}}\left[ {4\ln 3 - 1} \right] + \frac{1}{{16}} \cr & A = \frac{{324\ln 3}}{{16}} - \frac{{81}}{{16}} + \frac{1}{{16}} \cr & A = \frac{{324\ln 3 - 80}}{{16}} \cr & A = \frac{{81\ln 3 - 20}}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.