Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 79

Answer

$$A = 2 - 8{e^{ - 3}}$$

Work Step by Step

$$\eqalign{ & y = 2x{e^{ - x}},{\text{ }}y = 0,{\text{ }}x = 3 \cr & {\text{From the graph we can define the area as}} \cr & A = \int_0^3 {2x{e^{ - x}}} dx \cr & {\text{Integrating by parts}} \cr & u = 2x,{\text{ }}du = 2dx \cr & dv = {e^{ - x}}dx.{\text{ }}v = - {e^{ - x}} \cr & \int {udv = uv - \int {vdu} } \cr & \int {2x{e^{ - x}}dx} = \left( {2x} \right)\left( { - {e^{ - x}}} \right) - \int {\left( { - {e^{ - x}}} \right)\left( 2 \right)dx} \cr & \int {2x{e^{ - x}}dx} = - 2x{e^{ - x}} + 2\int {{e^{ - x}}dx} \cr & \int {2x{e^{ - x}}dx} = - 2x{e^{ - x}} - 2{e^{ - x}} + C \cr & {\text{Therefore}} \cr & A = \int_0^3 {2x{e^{ - x}}} dx \cr & A = \left[ { - 2x{e^{ - x}} - 2{e^{ - x}}} \right]_0^3 \cr & A = \left[ { - 2\left( 3 \right){e^{ - 3}} - 2{e^{ - 3}}} \right] - \left[ { - 2\left( 0 \right){e^{ - 3}} - 2{e^0}} \right] \cr & A = - 6{e^{ - 3}} - 2{e^{ - 3}} + 2 \cr & A = 2 - 8{e^{ - 3}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.