Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 76

Answer

$$\frac{{{x^3}{e^{2x}}}}{2} - \frac{{3{x^2}{e^{2x}}}}{4} + \frac{{3x{e^x}}}{4} - \frac{3}{8}{e^{2x}} + C$$

Work Step by Step

$$\eqalign{ & \int {{x^3}{e^{2x}}} dx \cr & {\text{From formula 70 on this page}} \cr & \int {{x^n}{e^{ax}}dx} = \frac{{{x^n}{e^{ax}}}}{a} - \frac{n}{a}\int {{x^{n - 1}}{e^{ax}}dx} \cr & {\text{Let }}n = 3,{\text{ }}a = 2 \cr & \int {{x^3}{e^{2x}}} dx = \frac{{{x^3}{e^{2x}}}}{2} - \frac{3}{2}\int {{x^{3 - 1}}{e^{2x}}dx} \cr & \int {{x^3}{e^{2x}}} dx = \frac{{{x^3}{e^{2x}}}}{2} - \frac{3}{2}\int {{x^2}{e^{2x}}dx} \cr & {\text{To solve }}\int {{x^2}{e^{2x}}dx} {\text{, let }}n = 2,{\text{ }}a = 2 \cr & \int {{x^3}{e^{2x}}} dx = \frac{{{x^3}{e^{2x}}}}{2} - \frac{3}{2}\left( {\frac{{{x^2}{e^{2x}}}}{2} - \frac{2}{2}\int {{x^{2 - 1}}{e^{2x}}dx} } \right) \cr & \int {{x^3}{e^{2x}}} dx = \frac{{{x^3}{e^{2x}}}}{2} - \frac{{3{x^2}{e^{2x}}}}{4} + \frac{3}{2}\int {x{e^{2x}}dx} \cr & {\text{To solve }}\int {x{e^{2x}}dx} {\text{, let }}n = 1,{\text{ }}a = 2 \cr & \int {{x^3}{e^{2x}}} dx = \frac{{{x^3}{e^{2x}}}}{2} - \frac{{3{x^2}{e^{2x}}}}{4} + \frac{3}{2}\left( {\frac{{x{e^x}}}{2} - \frac{1}{2}\int {{e^{2x}}dx} } \right) \cr & \int {{x^3}{e^{2x}}} dx = \frac{{{x^3}{e^{2x}}}}{2} - \frac{{3{x^2}{e^{2x}}}}{4} + \frac{{3x{e^x}}}{4} - \frac{3}{4}\int {{e^{2x}}dx} \cr & \int {{x^3}{e^{2x}}} dx = \frac{{{x^3}{e^{2x}}}}{2} - \frac{{3{x^2}{e^{2x}}}}{4} + \frac{{3x{e^x}}}{4} - \frac{3}{4}\left( {\frac{1}{2}{e^{2x}}} \right) + C \cr & \int {{x^3}{e^{2x}}} dx = \frac{{{x^3}{e^{2x}}}}{2} - \frac{{3{x^2}{e^{2x}}}}{4} + \frac{{3x{e^x}}}{4} - \frac{3}{8}{e^{2x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.