Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 69

Answer

$$\int x^{n} \ln x d x=\frac{x^{n+1}}{(n+1)^{2}}[-1+(n+1) \ln x]+C$$

Work Step by Step

Given $$\int x^{n} \ln x d x $$ Use integration by parts , let \begin{aligned} u&= \ln x \ \ \ \ \ \ &dv&= x^2 dx\\ du&=\frac{1}{x} dx \ \ \ \ \ \ &v&=\frac{1}{n+1}x^{n+1}dx \end{aligned} then \begin{aligned} \int x^{n} \ln x d x &= uv-\int vdu \\ &= \frac{1}{n+1}x^{n+1}\ln x-\frac{1}{n+1}\int \frac{x^{n+1}}{x}dx\\ &= \frac{1}{n+1}x^{n+1}\ln x-\frac{1}{n+1}\int x^{n}dx\\ &= \frac{1}{n+1}x^{n+1}\ln x-\frac{1}{n+1}\frac{1}{n+1}x^{n+1}+C\\ &= \frac{x^{n+1}}{(n+1)^{2}}[(n+1)\ln (x)-1 ]+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.