Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 78

Answer

$$\frac{1}{13}e^{2 x}(2 \cos 3 x+3 \sin 3 x)+C$$

Work Step by Step

Given $$\int e^{2 x} \cos 3 x d x$$ Use the rule $$\int e^{a x} \cos b x d x=\frac{e^{a x}(a \cos b x+b \sin b x)}{a^{2}+b^{2}}+C$$ Here $a= 2,\ b= 3 $ ,then \begin{aligned} \int e^{2x} \cos 3 x d x&=\frac{e^{2 x}(2 \cos 3 x+3 \sin 3 x)}{2^{2}+3^{2}}+C\\ &= \frac{1}{13}e^{2 x}(2 \cos 3 x+3 \sin 3 x)+C\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.