Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 74

Answer

$$x^{2} \sin x +2x \cos x-2 \sin x+C$$

Work Step by Step

Given $$\int x^{2} \cos x d x$$ Use the rule $$\int x^{n} \cos x d x=x^{n} \sin x-n \int x^{n-1} \sin x d x$$ Here $n=2$, then \begin{aligned} \int x^{2} \cos x d x=x^{2} \sin x-2 \int x \sin x d \end{aligned} To evaluate $\displaystyle\int x \sin x d x$, use $$\int x^{n} \sin x d x=-x^{n} \cos x+n \int x^{n-1} \cos x d x$$ Here $n=1$ and \begin{aligned} \int x\cos x d x&=-x \cos x+ \int \cos x d x\\ &=-x \cos x+ \sin x+C \end{aligned} It follows that \begin{aligned} \int x^{2} \sin x d x&=x^{2} \sin x-2 \int x \sin x d x\\ &=x^{2} \sin x +2x \cos x-2 \sin x+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.