Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 70

Answer

$$\int x^{n} e^{a x} d x=\frac{x^{n} e^{a x}}{a}-\frac{n}{a} \int x^{n-1} e^{a x} d x$$

Work Step by Step

Given $$\int x^{n} e^{a x} d x=\frac{x^{n} e^{a x}}{a}-\frac{n}{a} \int x^{n-1} e^{a x} d x$$ Use integration by parts , let \begin{aligned} u&= x^n \ \ \ \ \ \ &dv&= e^{a x} dx\\ du&=nx^{n-1} dx \ \ \ \ \ \ &v&=\frac{1}{a} e^{a x} \end{aligned} then \begin{aligned} \int x^{n} \ln x d x &= uv-\int vdu \\ &= \frac{1}{a} x^n e^{a x}-\frac{n}{a}\int x^{n-1} e^{a x}dx \\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.