Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 77

Answer

$$\frac{{{e^{ - 3x}}\left( { - 3\sin 4x - 4\cos 4x} \right)}}{{25}} + C$$

Work Step by Step

$$\eqalign{ & \int {{e^{ - 3x}}\sin 4x} dx \cr & \cr & {\text{Use the formula from exercise 71 on this page}} \cr & \int {{e^{ax}}\sin bx} = \frac{{{e^{ax}}\left( {a\sin bx - b\cos bx} \right)}}{{{a^2} + {b^2}}} + C{\text{ }}\left( {\bf{1}} \right) \cr & \cr & \overbrace {\int {{e^{ - 3x}}\sin 4x} dx}^{\int {{e^{ax}}\sin bx} } \Rightarrow {\text{Let }}a = - 3,{\text{ }}b = 4 \cr & {\text{Substituting into }}\left( {\bf{1}} \right) \cr & \int {{e^{ - 3x}}\sin 4x} dx = \frac{{{e^{ - 3x}}\left( { - 3\sin 4x - 4\cos 4x} \right)}}{{{{\left( { - 3} \right)}^2} + {{\left( 4 \right)}^2}}} + C \cr & {\text{Simplifying}} \cr & \int {{e^{ - 3x}}\sin 4x} dx = \frac{{{e^{ - 3x}}\left( { - 3\sin 4x - 4\cos 4x} \right)}}{{25}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.