Answer
$$\int x^{n} \sin x d x=-x^{n} \cos x+n \int x^{n-1} \cos x d x$$
Work Step by Step
Given
$$\int x^{n} \sin x d x $$
Use integration by parts , let
\begin{aligned}
u&= x^n \ \ \ \ \ \ &dv&= \sin x dx\\
du&=nx^{n-1} dx \ \ \ \ \ \ &v&= -\cos x
\end{aligned}
then
\begin{aligned}
\int x^{n} \sin x d x &= uv-\int vdu \\
&= -x^n\cos x+n \int x^{n-1}\cos xdx
\end{aligned}