Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 75

Answer

$$\frac{1}{6}x^6\ln \left(x\right)-\frac{x^6}{36}+C$$

Work Step by Step

Given $$\int x^{5} \ln x d x$$ Use the rule $$\int x^{n} \ln x d x=\frac{x^{n+1}}{(n+1)^{2}}[-1+(n+1) \ln x]+C$$ Here $n=5$, then \begin{aligned} \int x^{5} \ln x d x&=\frac{x^{6}}{(6)^{2}}[6 \ln x-1]+C\\ &= \frac{1}{6}x^6\ln \left(x\right)-\frac{x^6}{36}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.