Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 58

Answer

$$\int e^{\sqrt{2 x}} d x =(\sqrt{2x}-1)e^{\sqrt{2x}} +c$$

Work Step by Step

$$ \int e^{\sqrt{2 x}} d x $$ Let $ z^2= 2x\ \Rightarrow \ \ zdz= dx $, then $$ \int e^{\sqrt{2 x}} d x = \int ze^{z} d z $$ Integrate by parts \begin{align*} u&=z\ \ \ \ \ \ dv=e^zdz\\ du&=dz\ \ \ \ \ \ v=e^z \end{align*} Then \begin{align*} \int e^{\sqrt{2 x}} d x& = \int ze^{z} d z\\ &=ze^z-e^z+c\\ &=\sqrt{2x}e^{\sqrt{2x}}-e^{\sqrt{2x}}+c\\ &=(\sqrt{2x}-1)e^{\sqrt{2x}} +c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.