Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 522: 57

Answer

$$\int\left(x^{5} e^{x^{2}}\right) d x=\frac{1}{2}\left( x^4e^{x^2}-2(x^2e^{x^2}-e^{x^2})\right)+c$$

Work Step by Step

$$ \int\left(x^{5} e^{x^{2}}\right) d x $$ Let $z=x^{2} \Rightarrow d z=2 x d x$, then $$ \int\left(x^{5} e^{x^{2}}\right) d x=\frac{1}{2}\int\left(z^{2} e^{z}\right) dz $$ Using integration by parts, since \begin{align*} u=&z^2\ \ \ \ \ \ \ \ dv=e^zdz\\ du=&2zdz\ \ \ \ \ \ \ v=e^z \end{align*} Hence \begin{align} \int\left(x^{5} e^{x^{2}}\right) d x&=\frac{1}{2}\int\left(z^{2} e^{z}\right) dz\\ &=\frac{1}{2}\left( z^2e^z-2\int ze^zdz\right) \end{align} Using integration by parts again to integrate $\int ze^zdz$ \begin{align*} u=&z \ \ \ \ \ \ \ \ dv=e^zdz\\ du=& dz\ \ \ \ \ \ \ v=e^z \end{align*} Then \begin{align} \int ze^zdz&= ze^z-\int e^zdz\\ &=ze^z-e^z \end{align} Hence \begin{align} \int\left(x^{5} e^{x^{2}}\right) d x&=\frac{1}{2}\left( z^2e^z-2(ze^z-e^z)\right)\\ &=\frac{1}{2}\left( x^4e^{x^2}-2(x^2e^{x^2}-e^{x^2})\right)+c \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.