Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 326: 94

Answer

$\frac{dy}{dx}$ = [$\frac{2x^{2}+4}{x^{4}-5x^{2}+4}$ ][$\frac{(x+1)(x-2)}{(x-1)(x+2)}$]

Work Step by Step

$y$ = $\frac{(x+1)(x-2)}{(x-1)(x+2)}$ $apply$ $\ln()$ $on$ $both$ $side$ $\ln$$y$ = $\ln$$(x+1)$ + $\ln$$(x-2)$ - $\ln$$(x-1)$ - $\ln$$(x+2)$ $\frac{1}{y}$ $\frac{dy}{dx}$ = $\frac{1}{x+1}$ + $\frac{1}{x-2}$ - $\frac{1}{x-1}$ - $\frac{1}{x+2}$ $\frac{1}{y}$ $\frac{dy}{dx}$ = [$\frac{1}{x+1}$ - $\frac{1}{x-1}$] +[$\frac{1}{x-2}$ - $\frac{1}{x+2}$ ] $\frac{1}{y}$ $\frac{dy}{dx}$ = [$\frac{x-1-x-1}{x^{2}-1}$] + [$\frac{x+2-x+2}{x^{2}-4}$] $\frac{1}{y}$ $\frac{dy}{dx}$ = $\frac{-2}{x^{2}-1}$ + $\frac{4}{x^{2}-4}$ $\frac{1}{y}$ $\frac{dy}{dx}$ = $\frac{-2x^{2}+8+4x^{2}-4}{x^{4}-5x^{2}+4}$ $\frac{1}{y}$ $\frac{dy}{dx}$ = $\frac{2x^{2}+4}{x^{4}-5x^{2}+4}$ $\frac{dy}{dx}$ = $\frac{2x^{2}+4}{x^{4}-5x^{2}+4}$ $(y)$ $\frac{dy}{dx}$ = [$\frac{2x^{2}+4}{x^{4}-5x^{2}+4}$ ][$\frac{(x+1)(x-2)}{(x-1)(x+2)}$]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.