Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 326: 84

Answer

Relative minimum: $(4e^{-1/2}, -8e^{-1})$ Point of inflection: $(4e^{-3/2}, -24e^{-3})$

Work Step by Step

$y=x^{2}\displaystyle \ln\frac{x}{4}$. Domain $x>0$ [$\displaystyle \ln\frac{x}{4}]^{\prime}=$ ... chain rule ... $= \displaystyle \frac{1}{\frac{x}{4}}\cdot\frac{1}{4}=\frac{1}{x}$ $y^{\prime}=x^{2}(\displaystyle \frac{1}{x})+2x\ln\frac{x}{4}=x(1+2\ln\frac{x}{4})$ $y^{\prime\prime}=1+2\displaystyle \ln\frac{x}{4}+2x(\frac{1}{x})=3+2\ln\frac{x}{4}$ $y^{\prime}=0$ when x=0 (not in the domain) or $1+2\displaystyle \ln\frac{x}{4}=0$ $-1=2\displaystyle \ln\frac{x}{4}$ $\displaystyle \ln\frac{x}{4}=-\frac{1}{2}$ $x=4e^{-1/2}$ For $x=4e^{-1/2}$, $y=(4e^{-1/2})^{2}\displaystyle \ln\frac{4e^{-1/2}}{4}=16e^{-1}(-\frac{1}{2})=-8e^{-1}$ $y^{\prime\prime}=3+2\displaystyle \ln\frac{4e^{-1/2}}{4}=3+2(-\frac{1}{2})>0, $ Relative minimum: $(4e^{-1/2}, -8e^{-1})$ $y^{\prime\prime}=0$ when $3+2\displaystyle \ln\frac{x}{4}=0$ $2\displaystyle \ln\frac{x}{4}=-3$ $\displaystyle \ln\frac{x}{4}=-\frac{3}{2}$ $\displaystyle \frac{x}{4}=e^{-3/2}$ $x=4e^{-3/2}$ For $x=4e^{-3/2}$ $y=(4e^{-3/2})^{2}\displaystyle \ln\frac{4e^{-3/2}}{4}=16e^{-3}(-\frac{3}{2})=-24e^{-3}$ Point of inflection: $(4e^{-3/2}, -24e^{-3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.