Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 326: 83

Answer

Relative minimum: $(e, e)$ Point of inflection: $(e^{2}, \displaystyle \frac{e^{2}}{2})$

Work Step by Step

$y=\displaystyle \frac{x}{\ln x}$ Logarithmic functions have a restriction on the domain, the argument must be positive. Also, the denominator must not be zero ($x\neq 1)$ Domain:$ (0, 1)\cup (1,\infty)$ Use the quotient rule to find $y^{\prime}$ and $y^{\prime\prime}$ $y^{\prime}=\displaystyle \frac{(\ln x)(1)-(x)(1/x)}{(\ln x)^{2}}=\frac{\ln x-1}{(\ln x)^{2}}$ $[(\ln x)^{2}]^{\prime}$= ... chain rule ...$= 2\displaystyle \ln x\cdot(\ln x)^{\prime}=\frac{2\ln x}{x}$ $y^{\prime\prime}=\displaystyle \frac{(\ln x)^{2}(1/x)-(\ln x-1)(\frac{2\ln x}{x})}{(\ln x)^{4}}$ $=\displaystyle \frac{\frac{\ln x}{x}[\ln x-(\ln x-1)(2)]}{(\ln x)^{4}}$ $=\displaystyle \frac{2-\ln x}{x(\ln x)^{3}}$ $y^{\prime}=0$ when $x=e$ (critical number) For $x=e,\ y=\displaystyle \frac{e}{\ln e}=e >0$ relative minimum; $(e,e)$ $y^{\prime\prime}=0$ when $x=e^{2}$. At $x=e^{2},\ y=\displaystyle \frac{e^{2}}{\ln e^{2}}=\frac{e^{2}}{2}.$ Inflection point: $(e^{2}, \displaystyle \frac{e^{2}}{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.