Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 326: 92

Answer

$\displaystyle \frac{dy}{dx}=\frac{2x}{(x^{2}+1)^{3/2}(x^{2}-1)^{1/2}}$

Work Step by Step

$y=\sqrt{\frac{x^{2}-1}{x^{2}+1}}$ $...$apply ln( ) to both sides ... on the RHS, apply $\ln M^{n}=n\ln M,$ and $\displaystyle \ln(\frac{M}{N})=\ln M-\ln N$ $\displaystyle \ln y=\frac{1}{2}[\ln(x^{2}-1)-\ln(x^{2}+1)]\qquad $...$/\displaystyle \frac{d}{dx}$ ... chain rule... $\displaystyle \frac{1}{y}\frac{dy}{dx}=\frac{1}{2}[\frac{2x}{x^{2}-1}-\frac{2x}{x^{2}+1}]$ $\displaystyle \frac{1}{y}\frac{dy}{dx}=\frac{1}{2}[\frac{2x(x^{2}+1)-2x(x^{2}-1)}{(x^{2}-1)(x^{2}+1)}]$ $\displaystyle \frac{dy}{dx}=\sqrt{\frac{x^{2}-1}{x^{2}+1}}\cdot\frac{4x}{2(x^{2}-1)(x^{2}+1)}$ $\displaystyle \frac{dy}{dx}=\sqrt{\frac{x^{2}-1}{x^{2}+1}}\cdot\frac{2x}{(x^{2}-1)(x^{2}+1)}$ $\displaystyle \frac{dy}{dx}=\frac{2x(x^{2}-1)^{1/2}}{(x^{2}+1)^{1/2}(x^{2}-1)(x^{2}+1)}$ $\displaystyle \frac{dy}{dx}=\frac{2x}{(x^{2}+1)^{3/2}(x^{2}-1)^{1/2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.