Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 326: 72

Answer

$$y = x + 1$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{1}{2}x\ln {x^2},{\text{ }}\left( { - 1,0} \right) \cr & {\text{Differentiate }}f\left( x \right) \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{2}x\ln {x^2}} \right] \cr & f'\left( x \right) = \frac{1}{2}x\left( {\frac{{2x}}{{{x^2}}}} \right) + \ln {x^2}\left( {\frac{1}{2}} \right) \cr & f'\left( x \right) = 1 + \frac{1}{2}\ln {x^2} \cr & {\text{Calculate the slope at the given point }}\left( { - 1,0} \right) \cr & m = f'\left( { - 1} \right) = 1 + \frac{1}{2}\ln {\left( { - 1} \right)^2} \cr & m = 1 \cr & {\text{Find the equation of the tangent line at }}\left( { - 1,0} \right) \cr & y - {y_1} = m\left( {x - {x_1}} \right) \cr & y - 0 = \left( {x + 1} \right) \cr & y = x + 1 \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.