Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 326: 81

Answer

relative minimum: $( \displaystyle \frac{1}{e}, -\frac{1}{e})$

Work Step by Step

$y=x\ln x$ Logarithmic functions have a restriction on the domain, the argument must be positive. Domain: $x>0 $ Critical numbers$ (y^{\prime}=0$ or undefined): $y^{\prime}=$ ... product rule ... =$ x\displaystyle \cdot\frac{1}{x}+1\cdot\ln x=1+\ln x$ $1+\ln x=0$ $\ln x=-1$ $x=e^{-1}=\displaystyle \frac{1}{e}$ we have one critical number, $x=\displaystyle \frac{1}{e}$ . Second derivative test: $y^{\prime\prime}=(1+\displaystyle \ln x)^{\prime}=\frac{1}{x},$ which, for x=$\displaystyle \frac{1}{e}$, is positive. So, at x=$\displaystyle \frac{1}{e}$ $y=\displaystyle \frac{1}{e}\ln\frac{1}{e}=-\frac{1}{e},$ we have a relative minimum: $( \displaystyle \frac{1}{e}, -\frac{1}{e})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.