Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 326: 93

Answer

$y'=$ $\frac{2x^{2}+2x-1}{(x^{3}-x)}$ $\left(\frac{x(x-1)^{3/2}}{\sqrt{(x+1)}}\right)$

Work Step by Step

$y=\frac{x(x-1)^{3/2}}{\sqrt(x+1)}$ $, $ $x\gt1$ $Apply $ $\ln() $ $on$ $both $ $sides $ $lny=$ $\ln[\frac{x(x-1)^{3/2}}{\sqrt(x+1)}]$ $lny=ln(x)+\frac{3}{2}ln(x-1)-\frac{1}{2}ln(x+1)$ $\frac{y'}{y}=$ $\frac{1}{x}+$ $\frac{3}{2}(\frac{1}{x-1})-$ $\frac{1}{2}(\frac{1}{x+1})$ $\frac{y'}{y}=$ $\frac{1}{x}+$ $\frac{3}{2(x-1)}-$ $\frac{1}{2(x+1)}$ $\frac{y'}{y}=$ $\frac{1}{x}+$ $\frac{6(x+1)-2(x-1)}{4 (x^{2}-1)}$ $\frac{y'}{y}=$ $\frac{1}{x}+$ $\frac{6x+6-2x+2}{4 (x^{2}-1)}$ $\frac{y'}{y}=$ $\frac{1}{x}+$ $\frac{4x+8}{4 (x^{2}-1)}$ $\frac{y'}{y}=$ $\frac{1}{x}+$ $\frac{4(x+2)}{4 (x^{2}-1)}$ $\frac{y'}{y}=$ $\frac{1}{x}+$ $\frac{x+2}{x^{2}-1}$ $\frac{y'}{y}=$ $\frac{x^{2}-1+x^{2}+2x}{x(x^{2}-1)}$ $\frac{y'}{y}=$ $\frac{2x^{2}+2x-1}{(x^{3}-x)}$ $y'=$ $\frac{2x^{2}+2x-1}{(x^{3}-x)}$ $(y) $ $y'=$ $\frac{2x^{2}+2x-1}{(x^{3}-x)}$ $\left(\frac{x(x-1)^{3/2}}{\sqrt{(x+1)}}\right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.