Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 11 - Section 11.1 - Sequences and Summation Notation - Exercise Set - Page 829: 12

Answer

The answer is $\left \{ \frac{1}{3}, -\frac{1}{5}, \frac{1}{9}, -\frac{1}{17}\right \}$.

Work Step by Step

The given general term is $a_n=\frac{(-1)^{n+1}}{2^n+1}$ For the first term plug $n=1$. $a_1=\frac{(-1)^{1+1}}{2^1+1}$ $a_1=\frac{(-1)^{2}}{2+1}$ $a_1=\frac{1}{3}$. For the second term plug $n=2$. $a_2=\frac{(-1)^{2+1}}{2^2+1}$ $a_2=\frac{(-1)^{3}}{4+1}$ $a_2=\frac{-1}{5}$. For the third term plug $n=3$. $a_3=\frac{(-1)^{3+1}}{2^3+1}$ $a_3=\frac{(-1)^{4}}{8+1}$ $a_3=\frac{1}{9}$. For the fourth term plug $n=4$. $a_4=\frac{(-1)^{4+1}}{2^4+1}$ $a_4=\frac{(-1)^{5}}{16+1}$ $a_4=\frac{-1}{17}$. Hence, the first four terms are $\left \{ \frac{1}{3}, -\frac{1}{5}, \frac{1}{9}, -\frac{1}{17}\right \}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.