Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - Test: Chapter 12 - Page 845: 37

Answer

$2$

Work Step by Step

Using the properties of logarithms, the given expression, $ \log_a \dfrac{\sqrt[3]{x^2z}}{\sqrt[3]{y^2z^{-1}}},$ is equivalent to \begin{align*}\require{cancel} & \log_a \sqrt[3]{x^2z}-\log_a\sqrt[3]{y^2z^{-1}} &(\log_a\dfrac{x}{y}=\log_a x-\log_ay) \\\\&= \log_a (x^2z)^{1/3}-\log_a(y^2z^{-1})^{1/3} \\\\&= \dfrac{1}{3}\log_a (x^2z)-\dfrac{1}{3}\log_a(y^2z^{-1}) &(\log_b x^y=y\log_b x) \\\\&= \dfrac{1}{3}(\log_a x^2+\log_a z)-\dfrac{1}{3}(\log_a y^2+\log_az^{-1}) &(\log_b xy=\log_b x+\log_b y) \\\\&= \dfrac{1}{3}(2\log_a x+\log_a z)-\dfrac{1}{3}(2\log_a y-1\log_az) &(\log_b x^y=y\log_b x) \\\\&= \dfrac{2}{3}\log_a x+\dfrac{1}{3}\log_a z-\dfrac{2}{3}\log_a y+\dfrac{1}{3}\log_az \\\\&= \dfrac{2}{3}\log_a x-\dfrac{2}{3}\log_a y+\left(\dfrac{1}{3}\log_a z+\dfrac{1}{3}\log_az\right) \\\\&= \dfrac{2}{3}\log_a x-\dfrac{2}{3}\log_a y+\dfrac{2}{3}\log_a z .\end{align*} Substituting the given values, $\log_a x=2,$ $\log_ay=3,$ and $\log_a z=4,$ the expression above is equivalent to \begin{align*} & \dfrac{2}{3}(2)-\dfrac{2}{3}(3)+\dfrac{2}{3}(4) \\\\&= \dfrac{4}{3}-\dfrac{2}{\cancel3}(\cancel3)+\dfrac{8}{3} \\\\&= \dfrac{4}{3}-2+\dfrac{8}{3} \\\\&= \left(\dfrac{4}{3}+\dfrac{8}{3}\right)-2 \\\\&= \dfrac{12}{3}-2 \\\\&= 4-2 \\\\&= 2 .\end{align*} Hence, the given expression evaluates to $2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.