Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - Test: Chapter 12 - Page 845: 30

Answer

$x=4$

Work Step by Step

Using the properties of logarithms, the given equation, $\log(x-3)+\log(x+1)=\log5,$ is equivalent to \begin{align*}\require{cancel} \log[(x-3)(x+1)]&=\log5 &(\text{use }\log_b xy=\log_b x+\log_b y) .\end{align*} Since the logarithm on both sides of the equation have the same base, the arguments can be equated. That is, \begin{align*} (x-3)(x+1)&=5 .\end{align*} In the form $ax^2+bx+c=0,$ the equation above is equivalent to \begin{align*} x^2-3x+x-3&=5 &(\text{use }(a+b)(c+d)=ac+bc+ad+bd) \\ x^2-3x+x-3-5&=0 \\ x^2-2x-8&=0 &(\text{combine like terms}) \\ (x-4)(x+2)&=0 &(\text{use factoring of quadratic trinomials}) \end{align*} Equating each factor to zero (Zero Product Property), the solutions to the equation above are \begin{array}{l|r} x-4=0 & x+2=0 \\ x=4 & x=-2 \end{array} Check the solutions: \begin{align*} \text{If }x=4:& \\& \log(4-3)+\log(4+1)\overset{?}=\log5 \\& \log1+\log5\overset{?}=\log5 \\& 0+\log5\overset{?}=\log5 &(\log_b 1=0) \\& \log5\overset{\checkmark}=\log5 \\\\ \text{If }x=-2:& \\& \log(-2-3)+\log(-2+1)\overset{?}=\log5 \\& \log(-5)+\log(-1)\overset{?}=\log5 \\& \text{undefined, since $x$ must be greater than $0$ in $\log x$.} \end{align*} Hence, the only solution to the equation $\log(x-3)+\log(x+1)=\log5 $ is $x=4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.