Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - Test: Chapter 12 - Page 845: 1

Answer

$(f\circ g)(x)=4x^2+6x+2$ $(g\circ f)(x)=2x^2+2x+1$

Work Step by Step

Using $(f\circ g)(x)=f(g(x)),$ with $f(x)=x+x^2$ and $g(x)=2x+1,$ then \begin{align*}\require{cancel} f(g(x)&=f(2x+1) \\&= 2x+1+(2x+1)^2 \\&= 2x+1+[(2x)^2+2(2x)(1)+(1)^2] &(\text{use }(a+b)^2=a^2+2ab+b^2) \\&= 2x+1+[4x^2+4x+1] \\&= 4x^2+(2x+4x)+(1+1) \\&= 4x^2+6x+2 .\end{align*}Hence, $(f\circ g)(x)=4x^2+6x+2$. Using $(g\circ f)(x)=g(f(x)),$ then \begin{align*}\require{cancel} g(f(x)&=g(x+x^2) \\&= 2(x+x^2)+1 \\&= 2x+2x^2+1 \\&= 2x^2+2x+1 .\end{align*}Hence, $(g\circ f)(x)=2x^2+2x+1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.