Answer
$\dfrac{\log 14}{\log 3}\approx2.4022$
Work Step by Step
Using $\log_b x=\dfrac{\log_a x}{\log_a b}$ or the Change-of-Base Formula, the given expression, $
\log_3 14
,$ is equivalent to
\begin{align*}
&
\dfrac{\log_{10} 14}{\log_{10} 3}
\\\\&=
\dfrac{\log 14}{\log 3}
.\end{align*}
With the bases now expressed in base-$10$, the calculator can then be used. Hence, $\dfrac{\log 14}{\log 3}\approx2.4022$.