Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 16 - Waves-I - Problems - Page 475: 53d

Answer

The transverse speed of a particle of the string at the position $x = 1.5 ~cm$ when $t = \frac{9}{8} s$ is zero.

Work Step by Step

We can write a general expression for the standing wave: $y'(x,t) = [(2y_m) sin ~(kx)]~cos~\omega t$ We can write a general expression for the transverse speed at a point $x$: $u = -\omega~[(2y_m) sin ~(kx)]~sin~\omega t$ We can find the transverse speed of a particle of the string at the position $x = 1.5 ~cm$ when $t = \frac{9}{8} s$: $u = -\omega~[(2y_m) sin ~(kx)]~sin~\omega t$ $u = -(40\pi s^{-1})~[(0.50~cm) sin ~(\frac{\pi}{3}cm^{-1} \cdot 1.5~cm)]~sin~[(40\pi s^{-1})(\frac{9}{8} s)]$ $u = -(40\pi s^{-1})~[(0.50~cm) sin ~(\frac{\pi}{2})]~sin~(45\pi)$ $u = -(40\pi s^{-1})~(0.50~cm)~(0)$ $u = 0$ The transverse speed of a particle of the string at the position $x = 1.5 ~cm$ when $t = \frac{9}{8} s$ is zero.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.