Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 16 - Waves-I - Problems - Page 475: 52d

Answer

$0.11\;s$

Work Step by Step

Given wave Eq. is $y=(0.10\;m)(\sin\frac{\pi x}{2})\sin12\pi t\;.................(1)$ From Eq. $1$, we obtain $k=\frac{\pi}{2}\;rad/m$ and $\omega=12\pi\;rad/s$ Therefore, the speed of the waves on the rope is $v=\frac{\omega}{k}$ or, $v=\frac{12\pi\times2}{\pi}\;m/s$ or, $v=24\;m/s$ The rope oscillates in a second-harmonic standing wave pattern Therefore, $f=2\frac{v}{2L}$ or, $\frac{\omega}{2\pi}=2\frac{\omega}{k\times2\times L}$ or, $L=\frac{2\pi}{k}$ or, $L=\frac{2\pi\times 2}{\pi}\;m$ or, $L=4\;m$ Therefore, the length of the rope is $4\;m$ If the rope oscillates in a third-harmonic standing wave pattern, the period of oscillation will be $T=\frac{1}{f_3}$ or, $T=\frac{1}{3\frac{v}{2L}}$ or, $T=\frac{2L}{3v}$ Substituting the above values or, $T=\frac{2\times4}{3\times24}$ or, $\boxed{T=0.11\;s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.