Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 16 - Waves-I - Problems - Page 475: 52c

Answer

$1.39\;kg$

Work Step by Step

Given wave Eq. is $y=(0.10\;m)(\sin\frac{\pi x}{2})\sin12\pi t\;.................(1)$ From Eq. $1$, we obtain $k=\frac{\pi}{2}\;rad/m$ and $\omega=12\pi\;rad/s$ Therefore, the speed of the waves on the rope is $v=\frac{\omega}{k}$ or, $v=\frac{12\pi\times2}{\pi}\;m/s$ or, $v=24\;m/s$ The rope oscillates in a second-harmonic standing wave pattern Therefore, $f=2\frac{v}{2L}$ or, $\frac{\omega}{2\pi}=2\frac{\omega}{k\times2\times L}$ or, $L=\frac{2\pi}{k}$ or, $L=\frac{2\pi\times 2}{\pi}\;m$ or, $L=4\;m$ Therefore, the length of the rope is $4\;m$ Let, the mass of the rope is $M\;kg$ Thus, $\mu=\frac{M}{L}=\frac{M}{4}\;kg/m$ The rope is under tension $T=200\;N$ Therefore, $v=\sqrt {\frac{T}{\mu}}$ or, $24=\sqrt {\frac{4\times200}{M}}$ or, $M=\frac{4\times200}{24^2}$ or, $M=1.39\;kg$ Therefore, the mass of the rope is $1.39\;kg$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.