Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 16 - Waves-I - Problems - Page 475: 50c

Answer

$0$

Work Step by Step

For a particular transverse standing wave on a long string, one of the antinodes is at $x=0$. The displacement $y(t)$ of the string particle at $x=0$ is shown in Fig. 16-40. From the given conditions, we can write a mathematical form for $y(t)$, which takes the form $y(x, t)=-y_m\cos kx\sin\omega t$ Now, at $x=0.10\;m$, there is a node Therefore, $ kx=\frac{\pi}{2}$ or,$ k=\frac{\pi}{2x}$ or, $k=\frac{\pi}{2\times0.1}\;rad/m$ or, $\boxed{k=5\pi\;rad/m}$ From the graph: $\boxed{y_m=4\;cm=0.04\;m}$ and the time period of the wave is: $T=2\;s$ Therefore, $\omega=2\pi f=\frac{2\pi}{T}=\frac{2\pi}{2}\;rad/s$ or, $\boxed{\omega=\pi\;rad/s}$ Now, the transverse velocity of the string particle is given by $u(x,t)=-y_m\omega \cos kx\cos\omega t$ When $x=0.20\;m$ and $t=0.50\;s$ , the transverse velocity of the string particle is $u(0.20\;m, 0.50\;s)=- 0.04\times \pi\times\cos (5\pi\times 0.20)\cos(\pi\times 0.50)\;m/s$ or, $u(0.20\;m, 0.50\;s)=0$ Therefore, the transverse velocity of the string particle is $0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.