Answer
$S_n=2 (3^n-1)$
Work Step by Step
The sum of the first $n$ terms of a Geometric Sequence is given by:
$S_{n}=\displaystyle\sum_{k=1}^n a_1r^{k-1}=a_{1} (\dfrac{1-r^{n}}{1-r}) ; \ r\neq 0,1$
We are given: $a_{1}= 4 ; \ r= 3$
Now, $S_n= 4 \ [\dfrac{1-(3)^{n}}{1- 3} \ ] \\= 4 \ [\dfrac{1-(3)^{n}}{-2} \ ] $
Therefore, $S_n=2 (3^n-1)$