Answer
$S_n= \dfrac{1}{6}(3^{n}-1)$
Work Step by Step
The sum of the First $n$ Terms of a Geometric Sequence is given by:
$S_{n}=a_{1} (\dfrac{1-r^{n}}{1-r}) ; \ r\neq 0,1$
We are given:
$a_{1}=\dfrac{3}{9}=\dfrac{1}{3} ; \ r=3$
Now, $S_n= \dfrac{1}{3} \ (\dfrac{1-3^{n}}{1- 3} \ ) \\=-\dfrac{1}{2} \times \dfrac{1}{3} \times (3^{n}-1) $
Therefore, $S_n= \dfrac{1}{6}(3^{n}-1)$