Answer
$S_n= \dfrac{1}{4}(2^{n}-1)$
Work Step by Step
The sum of the First $n$ Terms of a Geometric Sequence is given by:
$S_{n}=a_{1} (\dfrac{1-r^{n}}{1-r}) ; \ r\neq 0,1$
We are given: $a_{1}=\dfrac{1}{4} ; \ r=2$
Now, $S_n= \dfrac{1}{4}\left(\dfrac{1-2^{n}}{1-2}\right) \\=-\dfrac{1}{4}(1-2^{n}) $
Therefore, $S_n= \dfrac{1}{4}(2^{n}-1)$