Answer
$M=38.8^{\circ}$
$n=154\,m$
$p=198\,m$
Work Step by Step
Sum of angles in a triangle is $180^{\circ}$
$\implies$ Angle $M=180^{\circ}-(90^{\circ}+51.2^{\circ})$
$=38.8^{\circ}$
Now, $\tan 51.2^{\circ}=\frac{\text{side opposite}}{\text{side adjacent}}=\frac{n}{124\,m}$
Or $n=\tan 51.2^{\circ}\times124\,m=154\,m$
$\cos 51.2^{\circ}=\frac{\text{side adjacent}}{\text{hypotenuse}}=\frac{124\,m}{p}$
$\implies p=\frac{124\,m}{\cos51.2^{\circ}}=198\,m$