Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Cumulative Review Exercises - Page 1181: 30

Answer

The rectangular form of the expression is $2+2i\sqrt{3}$.

Work Step by Step

Consider the following expression, ${{\left[ \sqrt{2}\left( \cos 15{}^\circ +i\sin 15{}^\circ \right) \right]}^{4}}$ Use the formula ${{\left( \cos \left( x \right)+i\sin \left( x \right) \right)}^{n}}=\cos \left( nx \right)+i\sin \left( nx \right)$ to solve the expression ${{\left[ \sqrt{2}\left( \cos 15{}^\circ +i\sin 15{}^\circ \right) \right]}^{4}}$ , $\begin{align} & {{\left[ \sqrt{2}\left( \cos 15{}^\circ +i\sin 15{}^\circ \right) \right]}^{4}}={{\left( \sqrt{2} \right)}^{4}}\left[ \cos 4\left( 15{}^\circ \right)+i\sin \left( 15{}^\circ \right) \right] \\ & =4\left( \cos 60{}^\circ +i\sin 60{}^\circ \right) \\ & =4\left( \frac{1}{2}+\frac{\sqrt{3}}{2}i \right) \\ & =2+2i\sqrt{3} \end{align}$ Hence, the rectangular form of the expression is $2+2i\sqrt{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.