Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Cumulative Review Exercises - Page 1181: 21

Answer

The dot product of the two vectors $v\cdot w$ is $-11$ and the angle between the two vectors is ${{170}^{\circ }}$.

Work Step by Step

Considered the vectors, $v=-2i+j$ And $w=4i-3j$ Now, use dot product formula $v\cdot w={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}$: $\begin{align} & v\cdot w=\left( -2 \right)\left( 4 \right)+\left( 1 \right)\left( -3 \right) \\ & =-8-3 \\ & =-11 \end{align}$ Thus, the dot product of the two vectors $v\cdot w$ is $-11$. Now, use the angle between two vectors formula $\theta ={{\cos }^{-1}}\left( \frac{v\cdot w}{\left\| v \right\|\left\| w \right\|} \right)$: $\theta ={{\cos }^{-1}}\left( \frac{-11}{\left\| v \right\|\left\| w \right\|} \right)$ Now, use magnitude of vectors formula, $\left\| v \right\|=\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}$: $\begin{align} & \left\| v \right\|=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( 1 \right)}^{2}}} \\ & =\sqrt{4+1} \\ & =\sqrt{5} \end{align}$ And $\begin{align} & \left\| w \right\|=\sqrt{{{\left( 4 \right)}^{2}}+{{\left( -3 \right)}^{2}}} \\ & =\sqrt{16+9} \\ & =\sqrt{25} \\ & =5 \end{align}$ Now, put in the formula: $\begin{align} & \theta ={{\cos }^{-1}}\left( \frac{-11}{\left( \sqrt{5} \right)5} \right) \\ & ={{\cos }^{-1}}\left( \frac{-11}{\left( 2.236 \right)5} \right) \\ & ={{\cos }^{-1}}\left( 0.9839 \right) \\ & \approx {{170}^{\circ }} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.