Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Cumulative Review Exercises - Page 1181: 28

Answer

The solution for the equations is $\left\{ \left( 2,-1,3 \right) \right\}$.

Work Step by Step

Consider the following equations, $\begin{align} & 2x-y-2z=-1 \\ & x-2y-z=1 \\ & x+y+z=1 \end{align}$ To solve the provided equations, we use the elementary row transformation until the augmented matrix will be converted into the identity matrix. The augmented matrix of the provided equations will be, $\left[ \begin{matrix} 2 & -1 & -2 & -1 \\ 2 & -2 & -1 & 1 \\ 1 & 1 & 1 & 4 \\ \end{matrix} \right]$ Use the row transformation $\frac{1}{2}{{R}_{1}}$ , $\left[ \begin{matrix} 1 & -\frac{1}{2} & -1 & -\frac{1}{2} \\ 1 & -2 & -1 & 1 \\ 1 & 1 & 1 & 4 \\ \end{matrix} \right]$ Use the row transformation $-{{R}_{1}}+{{R}_{2}}$ , $\left[ \begin{matrix} 1 & -\frac{1}{2} & -1 & -\frac{1}{2} \\ 1 & -\frac{3}{2} & 0 & \frac{3}{2} \\ 1 & 1 & 1 & 4 \\ \end{matrix} \right]$ Use the row transformation $-{{R}_{1}}+{{R}_{3}}$ , $\left[ \begin{matrix} 1 & -\frac{1}{2} & -1 & -\frac{1}{2} \\ 0 & -\frac{3}{2} & 0 & \frac{3}{2} \\ 0 & \frac{3}{2} & 2 & \frac{9}{2} \\ \end{matrix} \right]$ Use the row transformation ${{R}_{2}}+{{R}_{3}}$ , $\left[ \begin{matrix} 1 & -\frac{1}{2} & -1 & -\frac{1}{2} \\ 0 & -\frac{3}{2} & 0 & \frac{3}{2} \\ 0 & 0 & 2 & 6 \\ \end{matrix} \right]$ Use the row transformation $-\frac{2}{3}{{R}_{2}}$ , $\left[ \begin{matrix} 1 & -\frac{1}{2} & -1 & -\frac{1}{2} \\ 0 & -\frac{3}{2} & 0 & \frac{3}{2} \\ 0 & 0 & 2 & 6 \\ \end{matrix} \right]$ Use the row transformation $-\frac{2}{3}{{R}_{2}}$ , Use the row transformation $\frac{1}{2}{{R}_{3}}$ , $\left[ \begin{matrix} 1 & -\frac{1}{2} & -1 & -\frac{1}{2} \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \\ \end{matrix} \right]$ Use the row transformation $\frac{1}{2}{{R}_{2}}+{{R}_{1}}$ , $\left[ \begin{matrix} 1 & 0 & -1 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \\ \end{matrix} \right]$ Use the row transformation ${{R}_{3}}+{{R}_{1}}$ , $\left[ \begin{matrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \\ \end{matrix} \right]$ Thus, it has been converted into the identity matrix. Therefore, the solution is $\left\{ \left( 2,-1,3 \right) \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.