Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Cumulative Review Exercises - Page 1181: 26

Answer

See below:

Work Step by Step

Consider the polar equation $r=4\sin \theta $. Convert the polar equation into the rectangular equation, Since, $x=r\cos \theta $, $y=r\sin \theta $ and ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$ Multiply r in both sides of the equation $r=4\sin \theta $ , $\begin{align} & r\left( r \right)=r\left( 4\sin \theta \right) \\ & {{r}^{2}}=4r\sin \theta \end{align}$ Now, substitute the values $x=r\cos \theta $, $y=r\sin \theta $ and ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$ in equation ${{r}^{2}}=4r\sin \theta $ , $\begin{align} & {{r}^{2}}=4r\sin \theta \\ & {{x}^{2}}+{{y}^{2}}=4y \\ \end{align}$ Rewrite the equation ${{x}^{2}}+{{y}^{2}}=4y$ in the form of ${{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}$. ${{x}^{2}}+{{y}^{2}}=4y$ Subtract $4y$ from both sides of the equation, $\begin{align} & {{x}^{2}}+{{y}^{2}}-4y=4y-4y \\ & {{x}^{2}}+{{y}^{2}}-4y=0 \\ \end{align}$ Add ${{\left( 2 \right)}^{2}}$ to both sides of the equation, ${{x}^{2}}+{{y}^{2}}-4y+{{\left( 2 \right)}^{2}}={{\left( 2 \right)}^{2}}$ Now apply the formula ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ , $\begin{align} & {{x}^{2}}+{{y}^{2}}-4y+{{\left( 2 \right)}^{2}}={{\left( 2 \right)}^{2}} \\ & {{x}^{2}}+{{\left( y-2 \right)}^{2}}={{\left( 2 \right)}^{2}} \\ & {{\left( x-0 \right)}^{2}}+{{\left( y-2 \right)}^{2}}={{\left( 2 \right)}^{2}} \\ \end{align}$ Now, equate equation ${{x}^{2}}+{{y}^{2}}=4y$ to the equation of the circle, that is ${{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}$; here, r is the radius of the circle and $\left( h,k \right)$ is the center point of the circle. So, the center point of the circle is $\left( 0,2 \right)$ and the radius of the circle is 2.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.