Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Cumulative Review Exercises - Page 1181: 16

Answer

The derivative, $f'\left( x \right)$ of the function, $f\left( x \right)=-2{{x}^{2}}+7x-1$ is$-4x+7$.

Work Step by Step

Consider the function, $f\left( x \right)=-2{{x}^{2}}+7x-1$ Differentiate both sides with respect to x, $f'\left( x \right)=\frac{d}{dx}\left( -2{{x}^{2}}+7x-1 \right)$ Apply the sum/difference property of differentiation, $f'\left( x \right)=-\frac{d}{dx}\left( 2{{x}^{2}} \right)+\frac{d}{dx}\left( 7x \right)-\frac{d}{dx}\left( 1 \right)$ Apply the formula $\frac{d}{dx}\left[ c\cdot f\left( x \right) \right]=c\cdot \frac{d}{dx}\left( f\left( x \right) \right)$ for differentiation, $f'\left( x \right)=-2\frac{d}{dx}\left( {{x}^{2}} \right)+7\frac{d}{dx}\left( x \right)-\frac{d}{dx}\left( 1 \right)$ Apply the power rule for differentiation, $\begin{align} & f'\left( x \right)=-2\left( \left( 2 \right)\cdot {{x}^{2-1}} \right)+7\left( \left( 1 \right)\cdot {{x}^{1-1}} \right)-\left( 0 \right) \\ & =-4x+7{{x}^{0}} \\ & =-4x+7 \end{align}$ Hence, the derivative$f'\left( x \right)$ of the function, $f\left( x \right)=-2{{x}^{2}}+7x-1$ is $-4x+7$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.