Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Cumulative Review Exercises - Page 1181: 29

Answer

The solution for the equations is $168$.

Work Step by Step

Consider the provided expression, $\sum\limits_{i=1}^{6}{4{{\left( -2 \right)}^{i}}}$ Compare the provided expression with the standard form $\sum\limits_{i=1}^{n}{{{a}_{1}}{{\left( -r \right)}^{i}}}$. So, $n=6$, ${{a}_{1}}=4$ and $r=2$. Use the following sum expression for a geometric sequence, ${{S}_{n}}=\frac{{{a}_{1}}\left( 1-{{r}^{n}} \right)}{1-r}$ Substitute $n=6$, ${{a}_{1}}=4$ and $r=2$ in the expression ${{S}_{n}}=\frac{{{a}_{1}}\left( 1-{{r}^{n}} \right)}{1-r}$ , $\begin{align} & {{S}_{6}}=\frac{{{a}_{1}}\left( 1-{{r}^{n}} \right)}{1-r} \\ & =\frac{4{{\left( -2 \right)}^{1}}\left[ 1-{{\left( 2 \right)}^{6}} \right]}{1-\left( -2 \right)} \\ & =168 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.