Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Cumulative Review Exercises - Page 1181: 24

Answer

See the verification below.

Work Step by Step

Considered the identity, $\tan \left( \theta +\pi \right)=\tan \theta $ Now, use the sum formulas for tangents $\tan \left( \alpha +\beta \right)=\frac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }$ , $\tan \left( \theta +\pi \right)=\frac{\tan \theta +\tan \pi }{1-\tan \theta \tan \pi }$ Now put the value $\tan \pi =0$ , $\begin{align} & \tan \left( \theta +\pi \right)=\frac{\tan \theta +\tan \pi }{1-\tan \theta \tan \pi } \\ & =\frac{\tan \theta +0}{1-\tan \theta \cdot 0} \\ & =\frac{\tan \theta }{1} \\ & =\tan \theta \end{align}$ Hence, the left side is identical to the right side $\tan \left( \theta +\pi \right)=\tan \theta $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.