Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 6 - Trigonometric Functions - 6.6 Phase Shift; Sinusoidal Curve Fitting - 6.6 Assess Your Understanding - Page 428: 17

Answer

$y=3\sin{\left(\frac{2}{3}x+\frac{2}{9}\right)}$.

Work Step by Step

The general form for the sinusoidal function is: $y=A\sin{(\omega x-\phi)}+B$ where $A$ is the amplitude, $B$ is the vertical shift, we need $\omega$ can be computed from the period by the formula $\omega=\frac{2\pi}{T}.$ The phase shift is $\frac{\phi}{\omega}$, hence $\phi=\omega\cdot\text{phase shift}.$ Hence here: $A=3$, $B=0$, $\omega=\frac{2\pi}{T}=\frac{2\pi}{3\pi}=\frac{2}{3}$ $\phi=\omega\cdot\text{phase shift}=\frac{2}{3}\cdot\frac{-1}{3}=\frac{-2}{9}$. Hence our function is: $y=3\sin{\left(\frac{2}{3}x+\frac{2}{9}\right)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.