University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.1 - Integration by Parts - Exercises - Page 427: 9

Answer

$$\int x^2e^{-x}dx=-x^2e^{-x}-2xe^{-x}-2e^{-x}+C$$

Work Step by Step

$$A=\int x^2e^{-x}dx$$ Set $u=x^2$ and $dv=e^{-x}dx$ Then we would have $du=2xdx$ and $v=-e^{-x}$ Using the formula $\int udv= uv-\int vdu$: $$A=-x^2e^{-x}-\int(-e^{-x})2xdx$$ $$A=-x^2e^{-x}+2\int xe^{-x}dx$$ Set $u=x$ and $dv=e^{-x}dx$ Then we would have $du=dx$ and $v=-e^{-x}$ Using the formula $\int udv= uv-\int vdu$: $$A=-x^2e^{-x}+2\Big(-xe^{-x}-\int-e^{-x}dx\Big)$$ $$A=-x^2e^{-x}+2\Big(-xe^{-x}+\int e^{-x}dx\Big)$$ $$A=-x^2e^{-x}+2\Big(-xe^{-x}-e^{-x}\Big)+C$$ $$A=-x^2e^{-x}-2xe^{-x}-2e^{-x}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.