University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.1 - Integration by Parts - Exercises - Page 427: 27

Answer

$$\int^{\pi/3}_0 x\tan^2 xdx=\frac{\pi\sqrt3}{3}-\frac{\pi^2}{18}+\ln\frac{1}{2}$$

Work Step by Step

$$A=\int^{\pi/3}_0 x\tan^2 xdx$$ Here, $\tan^2x$ makes any attempts to take integral or derivative become difficult. So we need to substitute it with something else. We have $$\tan^2x=\frac{\sin^2x}{\cos^2x}=\frac{1-\cos^2x}{\cos^2x}=\frac{1}{\cos^2x}-1=\sec^2x-1$$ Therefore, $$A=\int^{\pi/3}_0 x(\sec^2x-1)dx$$ Take $u=x$ and $dv=(\sec^2x-1)dx$ Then $du=dx$ and $v=\tan x-x$ Apply the formula $\int^b_audv=uv]^b_a-\int^b_avdu$, we have $$A=x(\tan x-x)\Big]^{\pi/3}_0-\int^{\pi/3}_0(\tan x-x)dx$$ Here we need to learn $\int \tan xdx$ first. We have $$\int\tan xdx=\int\frac{\sin x}{\cos x}dx=\int\frac{-1}{\cos x}d(\cos x)=-\ln|\cos x|+C$$ Return back to $A$, we have $$A=\frac{\pi}{3}\Big(\tan\frac{\pi}{3}-\frac{\pi}{3}\Big)-0-\Big(-\ln|\cos x|-\frac{x^2}{2}\Big)\Bigg]^{\pi/3}_0$$ $$A=\frac{\pi}{3}\Big(\tan\frac{\pi}{3}-\frac{\pi}{3}\Big)+\Big(\ln|\cos x|+\frac{x^2}{2}\Big)\Bigg]^{\pi/3}_0$$ $$A=\frac{\pi}{3}\Big(\tan\frac{\pi}{3}-\frac{\pi}{3}\Big)+\Big(\ln|\cos\frac{\pi}{3}|+\frac{\pi^2}{18}\Big)-\Big(\ln|\cos0|+0\Big)$$ $$A=\frac{\pi}{3}\Big(\sqrt3-\frac{\pi}{3}\Big)+\Big(\ln\frac{1}{2}+\frac{\pi^2}{18}\Big)-\ln1$$ $$A=\frac{\pi\sqrt3}{3}-\frac{\pi^2}{9}+\frac{\pi^2}{18}+\ln\frac{1}{2}$$ $$A=\frac{\pi\sqrt3}{3}-\frac{\pi^2}{18}+\ln\frac{1}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.