University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.1 - Integration by Parts - Exercises - Page 427: 22

Answer

$$\int e^{-y}\cos ydy=\frac{e^{-y}}{2}(\sin y-\cos y)+C$$

Work Step by Step

$$A=\int e^{-y}\cos ydy$$ Set $u=\cos y$ and $dv=e^{-y}dy$ Then we have $du=-\sin ydy$ and $v=-e^{-y}$ Using the formula $\int udv= uv-\int vdu$: $$A=-e^{-y}\cos y-\int(-e^{-y})(-\sin y)dy$$ $$A=-e^{-y}\cos y-\int e^{-y}\sin ydy$$ Set $u=\sin y$ and $dv=e^{-y}dy$ Then we have $du=\cos ydy$ and $v=-e^{-y}$ Using the formula $\int udv= uv-\int vdu$: $$A=-e^{-y}\cos y-\Big(-e^{-y}\sin y-\int(-e^{-y})\cos ydy\Big)$$ $$A=-e^{-y}\cos y-\Big(-e^{-y}\sin y+\int e^{-y}\cos ydy\Big)$$ We notice that above, $\int e^{-y}\cos ydy$ is exactly the given integral to solve, meaning it equals $A$. Therefore, $$A=-e^{-y}\cos y-\Big(-e^{-y}\sin y+A\Big)+C$$ $$A=-e^{-y}\cos y+e^{-y}\sin y-A+C$$ $$2A=-e^{-y}\cos y+e^{-y}\sin y+C$$ $$A=\frac{-e^{-y}\cos y+e^{-y}\sin y}{2}+C=\frac{e^{-y}}{2}(\sin y-\cos y)+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.