University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.1 - Integration by Parts - Exercises - Page 427: 41

Answer

$$\int \sin3x\cos2xdx=-\frac{\cos5x}{10}-\frac{\cos x}{2}+C$$

Work Step by Step

$$A=\int \sin3x\cos2xdx$$ Here we need to use the trigonometric identity: $$\sin a\cos b=\frac{\sin(a+b)+\sin(a-b)}{2}$$ Therefore, $$A=\int\frac{\sin5x+\sin x}{2}dx$$ $$A=\frac{1}{2}\Big(\int\sin5xdx+\int\sin xdx\Big)$$ $$A=\frac{1}{2}\Big(-\frac{\cos5x}{5}-\cos x\Big)+C$$ $$A=-\frac{\cos5x}{10}-\frac{\cos x}{2}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.