University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.1 - Integration by Parts - Exercises - Page 427: 18

Answer

$$\int (r^2+r+1)e^rdr=e^r(r^2-r+2)+C$$

Work Step by Step

$$A=\int (r^2+r+1)e^rdr$$ Set $u=r^2+r+1$ and $dv=e^rdr$ Then we have $du=(2r+1)dr$ and $v=e^r$ Using the formula $\int udv= uv-\int vdu$: $$A=(r^2+r+1)e^r-\int(2r+1)e^rdr$$ Set $u=2r+1$ and $dv=e^rdr$ Then we have $du=2dr$ and $v=e^r$ Using the formula $\int udv= uv-\int vdu$: $$A=(r^2+r+1)e^r-\Big((2r+1)e^r-2\int e^rdr\Big)$$ $$A=(r^2+r+1)e^r-(2r+1)e^r+2e^r+C$$ $$A=e^r(r^2+r+1-2r-1+2)+C$$ $$A=e^r(r^2-r+2)+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.