Answer
$$\int\frac{\cos\sqrt x}{\sqrt x}dx=2\sin\sqrt x+C$$
Work Step by Step
$$A=\int\frac{\cos\sqrt x}{\sqrt x}dx$$
Let $a=\sqrt x$. We then have $da=\frac{1}{2\sqrt x}dx$
Therefore, $\frac{1}{\sqrt x}dx=2da$
$$A=\int\cos a\times2da=2\int\cos ada$$
$$A=2\sin a+C$$
$$A=2\sin\sqrt x+C$$